Distinct Spatial Patterns of SAR11, SAR86, and Actinobacteria Diversity along a Transect in the Ultra-oligotrophic South Pacific Ocean

نویسندگان

  • Nyree J. West
  • Cécile Lepère
  • Carmem-Lara de O. Manes
  • Philippe Catala
  • David J. Scanlan
  • Philippe Lebaron
چکیده

Distinct distribution patterns of members of the major bacterial clades SAR11, SAR86, and Actinobacteria were observed across a transect from the Marquesas islands through the ultra-oligotrophic South Pacific Gyre into the Chilean upwelling using 16S rRNA gene sequencing and RNA-DNA fingerprinting. Three different Actinobacteria sequence clusters belonging to "Candidatus Actinomarinidae" were localized in the western half of the transect, one was limited to the gyre deep chlorophyll maximum (DCM) and sequences affiliated to the OCS155 clade were unique to the upwelling. The structure of the surface bacterial community was highly correlated with water mass and remained similar across the whole central gyre (1300 nautical miles). The surface hyperoligotrophic gyre was dominated (>70% of all sequences) by highly diverse SAR11 and SAR86 operational taxonomic units and these communities were significantly different from those in the DCM. Analysis of 16S rRNA fingerprints generated from RNA allowed insights into the potential activity of assigned bacterial groups. SAR11 and Prochlorococcus showed the highest potential activity in all water masses except for the upwelling, accounting together for 65% of the total bacterial 16S rRNA in the gyre surface waters in equal proportions whereas the contribution of SAR11 decreased significantly at the DCM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Variations in Microbial Community Composition in Surface Seawater from the Ultra-Oligotrophic Center to Rim of the South Pacific Gyre

Surface seawater in the South Pacific Gyre (SPG) is one of the cleanest oceanic environments on earth, and the photosynthetic primary production is extremely low. Despite the ecological significance of the largest aquatic desert on our planet, microbial community composition in the ultra-oligotrophic seawater remain largely unknown. In this study, we collected surface seawater along a southern ...

متن کامل

Microbial community transcriptional networks are conserved in three domains at ocean basin scales.

Planktonic microbial communities in the ocean are typically dominated by several cosmopolitan clades of Bacteria, Archaea, and Eukarya characterized by their ribosomal RNA gene phylogenies and genomic features. Although the environments these communities inhabit range from coastal to open ocean waters, how the biological dynamics vary between such disparate habitats is not well known. To gain i...

متن کامل

Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site

We used terminal restriction fragment length polymorphism (T-RFLP), clone library, phylogenetic, and bulk nucleic acid hybridization analyses to identify and characterize spatial and temporal patterns in marine bacterioplankton communities at the Bermuda Atlantic Time-series Study (BATS) site. Nonmetric multidimensional scaling of monthly surface and 200-m bacterial 16S rDNA T-RFLP fragments fr...

متن کامل

Bacterial and archaeal biogeography of the deep chlorophyll maximum in the South Pacific Gyre

We used 16S rRNA gene tag pyro sequencing to examine the biogeography of bacterial and archaeal community composition in the deep chlorophyll maximum (DCM) of the South Pacific Gyre (SPG), the largest and most oligotrophic region of the world ocean. Dominant DCM bacterial taxa, including Prochlorococcus, SAR11, SAR406, and SAR86, were present at each sampled site in similar proportions, althoug...

متن کامل

Dynamics of the SAR11 bacterioplankton lineage in relation to environmental conditions in the oligotrophic North Pacific subtropical gyre.

A quantitative PCR assay for the SAR11 clade of marine Alphaproteobacteria was applied to nucleic acids extracted from monthly depth profiles sampled over a 3-year period (2004-2007) at the open-ocean Station ALOHA (A Long-term Oligotrophic Habitat Assessment; 22 degrees 45'N, 158 degrees 00'W) in the oligotrophic North Pacific Ocean. This analysis revealed a high contribution (averaging 36% of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in microbiology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016